Propolis: Composition, Health, Medicine: A Review
Stefan Bogdanov

Propolis: Composition, Health, Medicine: A Review
Stefan Bogdanov

Other bees, like soldiers, armed in their stings,
Make boot upon the summer's velvet buds,
Which pillage they with merry march bring home.
Shakespeare, King Henry

PROPOLIS IN HISTORY

The word propolis originates from Greek: «pro» = in front, «polis» = city. The meaning „in front of the city„ suits well the protecting role of propolis for the bee colony. The Greek word propolis means also to glue and describes also the role of propolis to cement openings of the bee hive. Another name of propolis is bee glue.

Propolis was already known in ancient Egypt, where it was probably used as an adhesive. Propolis was mentioned by the Greek philosopher Aristoteles. In his Historia animalium it was reffered to a substance which the bees smeared at the hive entrance and used as cure for bruises and sores, Crane, p. 550 of 70.

The Greeks used propolis as the principal ingredient of an exquisite perfume called “polyanthus”, which combined propolis, olibanum styrax and aromatic herbs, while the ancient Jews considered “tsori” or propolis as a medicine.

The Roman scholar Plinius (23-79 A.D) postulated, that it originates in the buds of different trees like willow, poplar, elm, reed and other plants. He knew of the use of propolis as a glue in the hive and about its medicinal properties and described them in his 35 volumes Natural History. He says “Current physicians use propolis as a medicine because it extracts stings and all substances embedded in the flesh, reduces swelling, softens indurations, soothes pain of sinews and heals sores when it appears hopeless for them to mend.” 265.

The Greek doctor Discorides, 1st century AD, thought that it came from Styrax: the yellow bee glue that is of a sweet scent and resembling styrax is to be chosen and which is soft and easy to spread after the fashion of mastic. It is extremely warm and attractive and is good for the drawing out of thorns and splinters. And being suffimigated it doth help old coughs and being applied it doth take away the lichens” 98.

The Arabs knew probably also about propolis. Doctor Avicenna speaks of two different kinds of wax: clean wax and black wax, the latter being probably propolis. He says: „by its strong smell it makes you sneeze“ and „has the characteristics to eliminating the spikes of the bolts and the stakes. It also rarefies cleans and soaks. 98.

In Europe it is mentioned in the herbal literatures. Other healers in the many centuries that followed also praised the use of bee products for healing. In John Gerard's famous herbal book, The History of Plants (1597), reference is also made to the use of "the resin or clammy substance of the black poplar tree buds" for healing ointments 98. Nicholas Culpepper's famous Complete Herbal (1653), under the heading of "The Poplar Tree" states that "the ointment called propolis is singularly good for all heat and inflammations in many parts of the body and cools the heat of the wounds" 98. In Green's Universal Herbal (1824), under Populus nigra (Black Poplar Tree), it is said that "the young leaves are an excellent ingredient for poultices for hard and painful swellings. The buds of both this and the white poplar smell very pleasantly in the spring. Being pressed between the fingers, yield a balsamic resinous substance (propolis), which smells like storax. A drachma of this tincture in broth is administered in internal ulcers and excoriations and is said to have removed obstinate or abnormal discharges from the intestines"
Although the main use of propolis was medical, it was used as a constituent of violin varnish. Violin builders like Stradivari, Amati and others used propolis as a constituent of their violin varnish p. 550 of 71, Georgia is the origin of the propolis gathering Caucasian bees. In the medicine book “The Carbadini”, published in the 13th century, the author suggests that propolis is good against dental decay98.

At the beginning of the 20th century a hypothesis was prevailing, that propolis is a digestion product of bee pollen168. In 1928 the German scientist Rösch, on the ground of meticulous observations, confirmed the hypothesis of Plinius that propolis originates from the buds of plants 270. The Russian researcher Popravko proved this theory by comparing the composition of buds resin and the propolis 255, 256.

Now it is known that bees gather propolis from different plants, in the temperate climate zone mainly from poplar. In Brazil, a major propolis producer, the main propolis type is the green propolis from Baccharis. You can find more on the collection of different types of propolis, its use, quality, trade and application forms (with many practical recipes) in the illustrated Propolis Books online at www.bee-hexagon.net.

COMPOSITION, QUALITY REQUIREMENTS

Table 1 A: Composition of raw poplar propolis after 25, 27, 75, 160, 253, 259, 324

<table>
<thead>
<tr>
<th>Substances</th>
<th>Phenolics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols, phenolic acids, esters, flavanons, dihydroflavanons, flavons, flavonols, chalkones, phenolic glycerides ;</td>
<td></td>
</tr>
<tr>
<td>Others: Aliphatics: acids, alcohols, esters, aldehydes, ketones, benzoic acid and esters</td>
<td></td>
</tr>
<tr>
<td>Essential oils</td>
<td>Mono-, and sesquiterpenes</td>
</tr>
<tr>
<td>3-5 % ethanol soluble poplar origin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>Beeswax components</th>
</tr>
</thead>
<tbody>
<tr>
<td>others: ca. 5 % partly ethanol soluble bee and pollen origin</td>
<td></td>
</tr>
<tr>
<td>Mainly minerals average ash content 2.1 %</td>
<td></td>
</tr>
<tr>
<td>Polysaccharides: 2 %</td>
<td></td>
</tr>
<tr>
<td>Proteins, amino acids, amines and amides: 0.7 %</td>
<td></td>
</tr>
<tr>
<td>Traces of carbohydrates, lactones, quinones, steroids, vitamins</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 B: Composition of raw Baccharis propolis after 57, 74, 181, 244, 245, 277

<table>
<thead>
<tr>
<th>Substances</th>
<th>Mainly cinnamic acid and derivatives, coumaric acid, prenylated compounds, artepillin C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor quantities of phenolics as flavonoids, benzoic acid, aliphatic acids and esters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>Mainly cinnamic acid and derivatives, coumaric acid, prenylated compounds, artepillin C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly cinnamic acid and derivatives, coumaric acid, prenylated compounds, artepillin C</td>
<td></td>
</tr>
<tr>
<td>Minor quantities of phenolics as flavonoids, benzoic acid, aliphatic acids and esters</td>
<td></td>
</tr>
<tr>
<td>NON BALSAM</td>
<td>Prenylated compounds, alkanes and terpenoids</td>
</tr>
<tr>
<td>10-15 % Ethanol insoluble Baccharis origin</td>
<td></td>
</tr>
</tbody>
</table>

NON BALSAM

<table>
<thead>
<tr>
<th>Substances</th>
<th>Beeswax</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-25 Ethanol insoluble</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>2.5 – 4.5 % minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 % of carbohydrates: fructose, mannose, inositol, erythrose</td>
<td></td>
</tr>
<tr>
<td>1-2 %: glycerol, lower aliphatic acids, amino acids, amines</td>
<td></td>
</tr>
</tbody>
</table>
Propolis is composed mainly by the plant resins and exudates that bees gather. Bees add wax, and also some secretions and pollen to it. The composition of propolis depends on its botanical and thus also on its geographical origin.

Several hundred different compounds have been characterised in the different propolis types. The typical components of poplar propolis are the phenolics: flavonoid aglycones, (flavones and flavanones), phenolic acids and their esters. The typical compounds of Brazilian propolis are prenylated derivatives of p-coumaric acid and of acetophenone, as well as diterpenes and lignans. The flavonoids are different from those in 'poplar type' propolis.

The overall content of this propolis type is similar to the poplar propolis, basically containing balsamic and non balsamic components. It contains a main part of plant derived substances and minor part of bee and pollen derived substances. The chemical composition is, however very different.

The balsam part of poplar propolis originates from the collected glue, while the non-balsamic constituents are added by the bees.

The non-ethanol soluble part of the Baccharis propolis originating partly from the plant, besides a part of minor constituents originating partly from the plants and from the bees and from pollen.

Quality requirements

Proper harvesting is very important (see Propolis Book chapter one on this website). In 2010 Italian researchers characterised chemically propolis harvested with different methods: by scraping, with plastic mats or with wooden wedges. The propolis harvested with wooden wedges had the highest content of balsam, thus the best quality. An Argentinian research paper recommends plastic mats as the better harvesting method than scraping, as it has lower Pb contamination.

It is recommended that collection is from Spring to Autumn. Propolis that has been in the bee hive during winter is much darker and is of lesser quality (Percie du Sert, personal communication).

Contamination is an important issue. This topic is reviewed by Bogdanov. Most important contaminants are heavy metals and lipophylic synthetic acaricides used for varroa mite control. Minimal contamination can be guaranteed by using certified organic propolis.

COMPOSITION AND NUTRITIONAL REQUIREMENTS

The composition of propolis varies greatly depending on its geographic and botanical origin. Approximate figures for the main nutrients estimated from the qualitative data from the literature are:

- Proteins: max 1 g/100 g
- Carbohydrates: max 1 g/100 g
- Fat: max: 1 g/100 g

Considering the low suggested intake of 200 mg per day propolis has an insignificant contribution to the daily requirements regarding the basic nutrients.

HEALTH ENHANCEING EFFECTS

Hundreds of publications have appeared in the last 40 years describing the biological and health enhancing properties of propolis. The different biological and health enhancing effects, as tested in cell experiments and animals are summarised on table 1. The effects described here were achieved in cell and animal experiments. A number of reviews have summarised the knowledge on propolis. The health enhancing effects are divided into main and secondary. This division has been made taking into consideration the number of publications and the health significance of the effect.

Most studies have been carried out with poplar and Brazilian baccharis propolis, while in some of them the propolis type was not determined. It is astonishing, that while the composition of the different type of propolis differs greatly depending on its botanical origin, the biological effects of the different propolis types are very similar: see Propolis Book One and tables 2 and 3.

The main propolis types on the market are poplar and baccharis propolis. These two types of propolis have similar biological properties but the active ingredients are different (table 3).

The health enhancing effects are found in the ethanol extractable part of propolis is called balsam. The biological activity of ethanol extracts is generally tested with 70 to 100 % ethanol extracts. 60-80 % aqueous ethanol solutions have a higher biological activity than tinctures, prepared with more or less water.
Table 1: Health enhancing properties of propolis as tested in cell cultures and animal experiments

<table>
<thead>
<tr>
<th>Effect</th>
<th>Tested propolis type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main functional effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibacterial</td>
<td>All propolis types</td>
<td>30, 52, 97, 164, 182, 294</td>
</tr>
<tr>
<td>Antiviral</td>
<td>All propolis types</td>
<td>30, 52, 97, 164, 182, 294</td>
</tr>
<tr>
<td>Antifungal</td>
<td>All propolis types</td>
<td>30, 52, 97, 164, 182, 294</td>
</tr>
<tr>
<td>Against parasites</td>
<td>Poplar, Baccharis, Cuba, Mexico</td>
<td>7, 30, 61, 82, 130, 231, 248, 294</td>
</tr>
<tr>
<td>Antitumor (stomach, skin, buccal)</td>
<td>Baccharis, India</td>
<td>30, 52, 97, 164, 182, 294</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>All propolis types</td>
<td>37, 38, 102, 223, 314</td>
</tr>
<tr>
<td>Radiation protective</td>
<td>Poplar, Baccharis</td>
<td>28-30, 97</td>
</tr>
<tr>
<td>Hepatoprotective</td>
<td>All propolis types</td>
<td></td>
</tr>
<tr>
<td>Antitumor, antimutagenic</td>
<td>Poplar, Baccharis, Cuba, Taiwan, Morocco, Korea</td>
<td></td>
</tr>
<tr>
<td>Anti-angiogenic</td>
<td>Poplar, Baccharis, Cuba, Brazil</td>
<td></td>
</tr>
<tr>
<td>Cyto- and chemopreventive</td>
<td>Poplar, Baccharis</td>
<td></td>
</tr>
<tr>
<td>Antiinflammatory</td>
<td>Poplar, Baccharis, Cuba, Egypt</td>
<td></td>
</tr>
<tr>
<td>Wound healing</td>
<td>Different propolis types</td>
<td></td>
</tr>
<tr>
<td>Immunostimulating</td>
<td>Poplar, Baccharis, Brazil</td>
<td></td>
</tr>
<tr>
<td>Immunomodulating (immunosuppressive in autoimmune diseases)</td>
<td>Baccharis</td>
<td></td>
</tr>
<tr>
<td>Muscle contracting at small concentration</td>
<td>Poplar, Baccharis</td>
<td></td>
</tr>
<tr>
<td>Muscle relaxant at higher concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-diabetes</td>
<td>Poplar, Baccharis, Asia</td>
<td></td>
</tr>
<tr>
<td>Cardioprotective: antmyocard, antithrombogenic, antihypertensive, antiarhythmic</td>
<td>Poplar, Baccharis</td>
<td></td>
</tr>
<tr>
<td>Local anaesthetic</td>
<td>Poplar, Baccharis</td>
<td></td>
</tr>
<tr>
<td>Improves regeneration of cartilagenious and bone tissue, dental pulp, cicatrising</td>
<td>Poplar, Baccharis</td>
<td></td>
</tr>
<tr>
<td>Improves corneal wound healing and inflammation in rats</td>
<td>Baccharis</td>
<td>186</td>
</tr>
<tr>
<td>Food preservative</td>
<td>Poplar, Baccharis, Argentine, Egypt</td>
<td>1, 8, 17, 156, 178, 205, 275, 303, 326</td>
</tr>
<tr>
<td>Secondary effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-ostheoporose</td>
<td>Poplar, Egypt</td>
<td>13, 91</td>
</tr>
<tr>
<td>Against scratching behaviour in mice</td>
<td>Baccharis</td>
<td>297</td>
</tr>
<tr>
<td>Estrogenic</td>
<td>Poplar</td>
<td>309</td>
</tr>
<tr>
<td>Against experimental rhinitis in mice</td>
<td>Baccharis</td>
<td>298</td>
</tr>
<tr>
<td>Against experimental colitis in rats</td>
<td>Poplar, Turkey</td>
<td>16, 109</td>
</tr>
<tr>
<td>Against rat colon anastomosis in rats</td>
<td>Poplar, Turkey</td>
<td>154</td>
</tr>
<tr>
<td>Angiostatic in human umbilical vein endothelial cells</td>
<td>Baccharis</td>
<td>63, 142</td>
</tr>
<tr>
<td>Anti-allergenic</td>
<td>Poplar, Bacharis</td>
<td>214, 293, 320</td>
</tr>
<tr>
<td>No effect on basic blood parameters, protects erythrocytes against radiation, anti-aggregation effect; protects sperm membrane from oxidative attack (1), improves rabbit (2) and rat (3) sperm quality neurotrophic effects in PC12m3 cells inhibits cell growth of higher plants and animals inhibits germination of wheat seedlings water-soluble propolis derivative relieves scopolamine-induced amnesia in mice enhancement of the hyperthermal tolerance in immune mononuclear cells of competitive athletes antiaging, increases life span of mice (1) reduces oxidative stress in aged mice (2) against skin aging and for skin protection protective against rabbit pasteurellosis anti-atherogenic and anti-angiogenic</td>
<td>Baccharis</td>
<td>15, 295</td>
</tr>
<tr>
<td></td>
<td>Poplar, Baccharis, Cuba</td>
<td>55, 122, 273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Poplar</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Biological effects of propolis components

<table>
<thead>
<tr>
<th>Component, propolis type</th>
<th>Biological Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyphenols and flavonoids Mostly poplar, but present in most propolis types</td>
<td>Antibacterial, antiviral, antifungal, antioxidant, antiaging, antiulcer, antitumor, allergic, antiinflammatory, cardioprotective, immunomodulating, hepato-protective, saticrising</td>
<td>10, 30, 52, 106, 120, 123, 179, 182, 216, 242, 264, 293</td>
</tr>
<tr>
<td>Caffeic acid phenethyl ester (CAPE) and other caffeates Poplar, Bacharis</td>
<td>Antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, fungicide, immunomodulatory, cardioprotective, hepatoprotective, antiosteoporosis</td>
<td>20, 23, 13, 97, 289, 300</td>
</tr>
<tr>
<td>Caffeic acid (CA) Poplar, Bacharis</td>
<td>Antiviral, Antioxidant, antiluer, antitumor</td>
<td>97</td>
</tr>
<tr>
<td>Polyprenylated benzophenones Cuba, Venezuela and Brazil Artepillin C Bacharis</td>
<td>Antioxidant, antiinflammatory, antitumor</td>
<td>20, 23</td>
</tr>
<tr>
<td>Prenylated flavanones (propolins) Taiwan</td>
<td>Antioxidant, anticancer, apoptosis inducing,</td>
<td>20, 23</td>
</tr>
<tr>
<td>Terpenes Greece, Crete, Croatia, Brazil Essential oils Brazil, Poland</td>
<td>Antibacterial</td>
<td>21, 22, 46, 190, 190, 254</td>
</tr>
<tr>
<td>Furfuran lignans Canary islands</td>
<td>Antibacterial</td>
<td>24, 80, 346</td>
</tr>
<tr>
<td>Polyphenols and flavonoids (poplar) China, Korea, Turkey (poplar?)</td>
<td>Antibacterial, antiviral, antifungal, antioxidant, antiaging, antiulcer, antitumor, allergic, antiinflammatory, cardioprotective, immunomodulating, hepato-protective, sigatrising</td>
<td>169, 173, 340</td>
</tr>
<tr>
<td>Caffeic acid phenethyl ester (CAPE) and other caffeates Poplar, Bacharis</td>
<td>Antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, fungicide, immunomodulatory, cardioprotective, hepatoprotective, antiosteoporosis</td>
<td>20, 23, 13, 97, 289, 300</td>
</tr>
<tr>
<td>Caffeic acid (CA) Poplar, Bacharis</td>
<td>Antiviral, Antioxidant, antiluer, antitumor</td>
<td>97</td>
</tr>
<tr>
<td>Polyprenylated benzophenones Cuba, Venezuela and Brazil Artepillin C Bacharis</td>
<td>Antioxidant, antiinflammatory, antitumor</td>
<td>20, 23</td>
</tr>
<tr>
<td>Prenylated flavanones (propolins) Taiwan</td>
<td>Antioxidant, anticancer, apoptosis inducing,</td>
<td>20, 23</td>
</tr>
<tr>
<td>Terpenes Greece, Crete, Croatia, Brazil Essential oils Brazil, Poland</td>
<td>Antibacterial</td>
<td>21, 22, 46, 190, 190, 254</td>
</tr>
<tr>
<td>Furfuran lignans Canary islands</td>
<td>Antibacterial</td>
<td>24, 80, 346</td>
</tr>
</tbody>
</table>

Table 3: Biologically active ingredients in Poplar and Baccharis propolis

<table>
<thead>
<tr>
<th>Biological activity</th>
<th>Propolis type, active ingredient</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial</td>
<td>Poplar: different flavonones, flavons, phenolic acids and their esters</td>
<td>19, 97, 163</td>
</tr>
<tr>
<td></td>
<td>Bacharis: prenylated p-coumaric acids, labdane diterpenes</td>
<td>19, 22, 183</td>
</tr>
<tr>
<td>Antifungal</td>
<td>Poplar: pinocembrin, galangin, benzoi acid, salycilic acid, vanillinn</td>
<td>100, 197</td>
</tr>
<tr>
<td></td>
<td>Bacharis: mono and sesquiterpenes, Artipellin C</td>
<td>100</td>
</tr>
<tr>
<td>Antiviral</td>
<td>Poplar: Polyphenols, phenyl-carboxylic acids, and esters of substituted cinnamic acids, caffeic acid, quercetin, luteolin, fisetin, quertecagtenin,</td>
<td>97, 157</td>
</tr>
<tr>
<td></td>
<td>Bacharis: activity detected but no substances identified</td>
<td>51, 164</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>Poplar: different flavonoids phenolics and their esters</td>
<td>19, 97, 165</td>
</tr>
<tr>
<td>Radiation protective</td>
<td>Bacharis: different prenylated p-coumaric acids and flavonoids</td>
<td>19, 97, 165</td>
</tr>
<tr>
<td>Hepatoprotective</td>
<td>Poplar: different flavonoids, CAPE, ferulic acid, caffeic acid</td>
<td>19, 97, 165</td>
</tr>
<tr>
<td></td>
<td>Bacharis: different prenylated p-coumaric acids, flavonoids, lignans</td>
<td>26, 97</td>
</tr>
<tr>
<td>Anticancer and antitumor</td>
<td>Poplar: CAPE, CAE, caffeic acid, caffeic acid phenylethyl ester, apigenin, quercitin, genistein, rutin, p-coumaric acid, ferulic acid, kampferol, naringenin</td>
<td>19, 97, 223, 306, 144, 318, 19, 97, 223</td>
</tr>
<tr>
<td></td>
<td>Bacharis: artipelline C, baccharin, drupanin, cinamic acid derivatives, prenylated p-coumaric acids, clerodane diterpenes, benzoferanes</td>
<td>105, 141, 293, 293, 321</td>
</tr>
<tr>
<td>Immuno modulating</td>
<td>Poplar: CAPE, chrisin, benzycaffeate, phenethylferrulate, cinamic acid</td>
<td>105, 141, 293, 293, 321</td>
</tr>
<tr>
<td></td>
<td>Bacharis: caffeoylquinic acid derivatives, clerodane diterpenoid, artipelline C</td>
<td>105, 141, 293, 293, 321</td>
</tr>
<tr>
<td>Anti-inflammatory</td>
<td>Poplar: flavonons, flavons, phenolic acids and their esters</td>
<td>19, 97</td>
</tr>
<tr>
<td></td>
<td>Bacharis:artipelline C</td>
<td>249</td>
</tr>
<tr>
<td>Cardioprotective</td>
<td>Poplar: CAPE, acacetin, chrysin, quercetin</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Bacharis: caffeoylquinic acid</td>
<td>202</td>
</tr>
<tr>
<td>Anti-ulcer</td>
<td>Poplar: CAPE, caffeic acid, pinocembrin, galangin, chrysin</td>
<td>72, 97, 140</td>
</tr>
<tr>
<td></td>
<td>Bacharis: ferulic, p-coumaric and cinamic acids,</td>
<td>97</td>
</tr>
</tbody>
</table>
Propolis against bacteria, fungi, molds and parasites

The antimicrobial activity of propolis is by far the most important biological property of propolis, which has deserved the highest scientific interest, considering the high number of performed studies. Around 700 hundred papers deal with this aspect. In spite of the big compositional differences of the different propolis types, they all have antimicrobial activity. It seems that rather the sum of the propolis antimicrobial components than individual substances are responsible for the antimicrobial action.

The results summarised below show that propolis has antibacterial, fungicide, antiviral and antiparasitic effects of against harmful and pathogen organisms. These properties make it a good candidate for its application in therapy (see section apitherapy).

Antibacterial activity

Table 4: Effects of propolis against pathogenic and harmful bacteria funghi, viruses, molds and parasites

<table>
<thead>
<tr>
<th>Gram-positive bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus, Bacillus mesentericus, Corynebacterium spp., Corynebacterium diphtheriae, Diplococcus pneumoniae, Enterococcus spp., Mycobacterium sp., Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus: cricetus epidermis faecalis mutans, pyogenes, viridans, sobrinus,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gram negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branhamella catarrhalis, E. coli, Helicobacter pylori, Klebsiella ozaemae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella: choleraesuis, dublin, enteritidis, exneri, gallinarum, pullorum, paratyphi-B, typhi Shigella: dysenteriae, sonnei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus sp., Candida: albicans, guillermondii, parapsilosis, tropicalis; Cryptococcus sp., Cryptococcus neoformans, Histoplasma capsulatum, Madurella mycetomi, Microsporum: audomini, canis, cepleo, distortum, furrugeneum, gypseum; Piedra hortae, Philalophora jeanselmei, Saccharomyces sp., Trichophyton: sp., mentagrophytes, rubrum, Trichosporon cutaneum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus, Coronavirus, Herpes symplex, Influenca A and B virus, Newcastle disease virus, Polio virus, Vaccinia, Rotavirus; Vesicular Stomatitis Virus, Coronavirus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parasites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholomonas paramecum, Eimeria: magna, media, perforans; Giardia lambia, Giardia duodenalis, Trichomonas vaginalis, Trypanosoma cruzi, Trypanosoma evansi</td>
</tr>
</tbody>
</table>

Propolis is the bee product with the highest antimicrobial activity. The antibacterial activity of propolis has been confirmed by numerous scientific studies. Antibacterial activity has been demonstrated against both gram positive and gram-negative, both aerobic and anaerobic types.

Although the composition of propolis differs considerably depending on its botanical origin, all examined types of propolis revealed a strong antibacterial activity. The antibacterial activity of poplar propolis and other types of propolis of different geographical and botanical origin was similar.

Poplar propolis gathered by by Apis mellifera caucasica had a higher antibacterial activity than the one gathered by Apis mellifera anatolica and Apis mellifera carnica.

The antibacterial activity of propolis to pathogenic or harmful bacteria is summarised in the table below. It has been proposed that propolis is more active against gram-positive pathogens but many gram negative bacteria are also inhibited (see table 4).

More recent research has revealed antibacterial activity against Micrococcus luteus, Salmonella typhimurium. Although in previous studies it was claimed that Listeria monocytogenes is not sensitive to propolis, recent works revealed significant antibacterial activity. In recent study it has been shown that propolis has a strong antibacterial activity against 13 different plant pathogens.

With the increasing of antibiotic resistance in the last years there is a considerable interest of hospitals in propolis as an antibacterial agent. It has been shown that propolis has synergistic effects with antibiotic action against bacteria.

The antibacterial effect of propolis is bactericidal, that means bacteria-killing, by inhibiting their mobility. Each propolis type has different antibacterial substances (see table 5). The antibacterial substances of the two main propolis types are given in table 6.
propolis is also based on quorum sensing inhibitory (QSI) action, the flavonoid pinocembrin being an important QSI agent.284

Generally biologically activity decreases with increasing storage. However it was found that propolis solution in ethanol stored for 10-15 years results not in result in a decrease, but in an increase of antibacterial activity195.

Antifungal activity

Poplar propolis is the bee product with the highest antifungal activity as tested with 40 yeast strains of *Candida albicans*, *Candida glabrata*, *Candida krusei*, and *Trichosporon* spp.155

Poplar propolis gathered by by Apis mellifera caucasica in Turkey had higher antifungal activity than the one gathered by *Apis mellifera anatolica* and *Apis mellifera carnica*302. On the other hand the antifungal and mostly antiviral properties of propolis from different botanical and geographical origin was similar.164

Recent research on the of propolis have shown fungicide effects on juice spoilage fungi *Candida famata*, *C. glabrata*, *C. kefyr*, *C. pelliculosa*, *C. parapsilosis* and *Pichia ohmeri*156.

Antivirus activity

Propolis kills the fungi and also the viruses, while the growth of the latter is also inhibited.182 Propolis acts against many different viruses (table 4). Most notable is its activity against the influenza virus, found in propolis of different origin164 and in Brazilian green propolis.296 CAPE, a poplar propolis constituent is a prominent antiviral substance.92

Antiparasite activity

Propolis acts against a number of parasites (table 4). Thus, it could act as an protective agent against intestinal parasites, e.g. against *S. mansoni*159 and against *Giardia duodenalis* trophozoites.102

Propolis from Portugal has antiparasitic against the Trypanosomas brucei, the parasite of the African sleeping disease.96

Antioxidant and hepatoprotective activity

Antioxidant activity

An antioxidant is a molecule capable of slowing or preventing the oxidation of other molecules and so to prevent such changes. The antioxidant effect correlates roughly with the anti-inflammatory and hepatoprotective activity.

Although the phenolic content seems to vary according to the botanical origin, antioxidant effects for most propolis types have been reported.

Compared to pollen and royal jelly, propolis extracts exhibited the highest antioxidant activity.213

In a study with propolis of different geographical and botanical origin it was found that the antioxidant activity correlates well with its total concentration of polyphenols.165, 196 Poplar propolis with relatively higher polyphenol content has a higher antioxidant activity than Brazilian propolis, which contains less polyphenols.159, 165, 166 The antioxidant activity of Spanish (poplar) and Polish (poplar) propolis correlated both significantly to the phenolic content,45, 308 while in Polish and Argentina propolis it correlated also in additiona significantly to the flavonoid content.50, 308

The antioxidant activity differs according to the type of the polyphenols. CAPE, a typical constituent of poplar propolis, seems to be one of the most powerful antioxidant substances of propolis.97

The antioxidant activity is measured in different units. The antioxidant activity of different foods is compared mostly by the so called ORAC (Oxygen Radical Absorbance Capacity) index. According to a 2007 US Patent a 50/50 water/acetone extract of poplar propolis scored 2459 ORAC units, while a hexane/ethylacetetate (75:25) scored 7215 ORAC units. Pure propolis resin scored 9674 ORAC units (µmole TE/g).134 The ORAC value of Uruguay poplar propolis was similarly high: 8000 µmol TE/g propolis.305 Thus propolis is one of the strongest natural antioxidants.

10 % ethanol poplar propolis extract from Croatia had about 70 % of the FRAP antioxidant activity of known antioxidants as vitamin C and trilox. Propolis modulated antioxidant enzymes (AOE) and significantly decreased lipid peroxidation processes (LPO) in plasma, liver, lungs, and brain of mice. The effect was dose- and tissue-dependent. The highest vulnerability to oxidative stress was observed in lungs where hyperoxia was not associated with augmentation of AOE. Propolis protected lungs from hyperoxia by increased catalase (CAT)
activity. This is of special importance for lungs since lungs of adult animals are highly vulnerable to oxidative stress because of their inability to augment AOE activity. The authors conclude that because of its strong antioxidant and scavenging abilities, native propolis might be used as a strong plant-based antioxidant effective not only in physiological conditions but also in cases that require prolonged high concentration of oxygen.

It was found that water soluble propolis extracts of Chinese (poplar) propolis was significant and that it contains more biologically active flavonoids, and also that its antioxidant capacity was similar to that of the ethanol extracts.

Propolis is a powerful antioxidant. This effect is due to the high concentration of phenolics and other antioxidant compounds. The radical theory in human physiology claims that the active free radicals are involved in almost all the cellular degradation process and leads to cell death. Oxidative stress is thought to contribute to the development of chronic and degenerative diseases such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular and neurodegenerative diseases. Propolis can be regarded as a supplement preventing chronic degeneration diseases, e.g. cancer.

Hepatoprotective activity and anti-radiation activity

The liver is perhaps the hardest working organ of the body. It has hundreds of tasks to perform, including detoxification of the blood. A sluggish liver means fatigue and toxemia and a high risk of various chronic diseases. Phenolics are known to have a hepatoprotective function. Hepatoprotective activity for different types of propolis has been reported, which correlated to the antioxidant activity. Propolis counteracts hepatoxic effects of alcohol liver injury in mice and also of paracetamol induced liver damage of mice and carbon tetrachloride induced liver damages in rats.

The anti-radiation effect of propolis have been reviewed by Orsolic in 2010. As an antioxidant propolis has a powerful effect to counteract radiation as tested in tumor cells or animals. Propolis act also in apoptosis (cell death) of cancer cells thus improving the anti-cancer effect of radiation.

Propolis supplementation is prophylactic for liver health and for counteracting the damaging effect of tumor irradiation.

Immunomodulating effects

The immunomodulating effect has been reviewed in 2007 by Sforcin. All propolis types have immunostimulating activity (see table 3). However the active substances of the various types of propolis are different (table 5 and 6).

Action on macrophages

In vitro and in vivo assays demonstrated the modulatory action of propolis on murine peritoneal macrophages, increasing their microbicidal activity and stimulating the lytic activity of natural killer cells against tumor cells by enhancing antibody production. The best immunostimulating results were observed when propolis was administered over a short-term to animals. Both poplar and baccharis propolis increase the microphage activity.

Action on lymphocytes and antibody production

Both poplar and baccharis propolis can have an immunostimulating effect by increasing antibody production and by activating B and T lymphocytes, an adjuvant like activity of propolis. The propolis compounds chrysine, quercetin, and galangin have a antiparasitic activity.

Propolis can be regarded as a supplement for the stimulation of the immune system.

Antitumor effects

The antitumor activity of propolis has been reviewed. Orsolic, 2010, shows that the chemopreventive activity of propolis in animal models and cell cultures are likely to be the result of their ability to inhibit DNA synthesis in tumour cells, their capability to induce apoptosis (cell death) of tumour cells, and their property to activate macrophages to produce factors capable of regulating the function of B-, T- and NK-cells, respectively. Especially interesting is the synergy between propolis and anticancer agents. Moreover, flavonoids from propolis play a protective role against the toxicity of the chemotherapeutic agents or radiation in mice, giving hope that they may have similar protective action in humans. The combination with an adjuvant antioxidant therapy may enhance the effectiveness of chemotherapy by ameliorating the side effect on leukocytes, liver and kidneys and consequently enabling dose escalation.
The cytotoxic effects leading to the anticancer activity have been reviewed in 2011 by Watanabe et al. Vit et al, 2015, reviews the different properties of propolis which lead to anticancer activity: antioxidant, antiproliferating, cancer cells apoptosis causing, anti-angiogenic (multi-step process to form blood vessels, this process is disturbed in cancer), immuno-suppressive, anti-inflammatory, immunomodulatory.

Although many polyphenols have an anti-metastatic activity, caffeic acid phenethyl ester (CAPE) from poplar propolis and Artepillin C from baccharis propolis have been identified as the most potent antitumor agents, but antitumor effects of chrysin (poplar propolis) and both nemorosone and plukenetione A (in Cuban propolis) have been reported.

Regular consumption of propolis food supplements can have a preventive effect against mutation linked cancers in humans.

Propolis can be regarded as a supplement for cancer prevention

Table 5: Health enhancing effects tested in human cells or in humans

<table>
<thead>
<tr>
<th>Study, effect</th>
<th>Cell and tissue experiments</th>
<th>Propolis type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiproliferative activity in many different human cancer cells</td>
<td>All propolis types</td>
<td>Chile (poplar)</td>
<td>223, 293</td>
</tr>
<tr>
<td>Antioxidant and antiproliferative activity in human B (human mouth epidermoid carcinoma cells), Caco-2 (colon adenocarcinoma cells) and DU-145 (androgen-insensitive prostate cancer cells)</td>
<td>Chile (poplar)</td>
<td>Argentine</td>
<td>272</td>
</tr>
<tr>
<td>Propolis has protective action against oxidative modification of lipids in human unfractionated serum</td>
<td>Argentine</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>Propolis may have a role in protection against male infertility</td>
<td>Chile (poplar)</td>
<td>Italy (poplar)</td>
<td>273, 56</td>
</tr>
<tr>
<td>Propolis extracts and CAPE have protective action of propolis in cartilage tissue alteration, that appears greater than that elicited by indomethacin, commonly employed in joint diseases</td>
<td>Chile (poplar)</td>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Dressing of artificially formed losses of the cartilaginous tissue with the preparation containing ethanol extract of propolis (EEP) caused acceleration of regenerating processes in the lesioned cartilage. EEP inserted into the joint is well tolerated</td>
<td>Poland (poplar)</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>10% propolis was a more effective storage medium for human periodontal ligament cells than other tested media and is a suitable transport medium for avulsed teeth</td>
<td>Turkey (poplar)</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>Antiapoptotic effects on human macrophages</td>
<td></td>
<td>Brazil (Baccharis)</td>
<td>68, 39</td>
</tr>
<tr>
<td>Preclinical Treatment of Candidiasis vulvovaginal infection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical studies

<table>
<thead>
<tr>
<th>Study, effect</th>
<th>Cell and tissue experiments</th>
<th>Propolis type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successfully applied against the different stomatological pathologic conditions: stomatitis, parodontosis, gingivitis and caries</td>
<td>Poplar and Baccharis</td>
<td>Italy, Poland (poplar)</td>
<td>12, 125, 158, 177, 177, 187, 220, 279, 324</td>
</tr>
<tr>
<td>Use of combined therapy with propolis and antibiotic against Helio bacter pillory in humans, better efficiency than antibiotic alone</td>
<td>Italy, Poland (poplar)</td>
<td>Poland (poplar)</td>
<td>217, 250</td>
</tr>
<tr>
<td>Propolis was successfully used in patients operated for goitre, patients with wounds and ulcerations difficult to heal and patients with non-specific rectal inflammation.</td>
<td>Poland (poplar)</td>
<td>Poland (poplar)</td>
<td>121</td>
</tr>
<tr>
<td>A total of 260 steel workers suffering from bronchitis were successfully treated for 24 days with an ethanolic extract of propolis (EEP) in a physiological salt solution.</td>
<td>Poland (poplar)</td>
<td>Poland (poplar)</td>
<td>286</td>
</tr>
<tr>
<td>CAPE-rich water-miscible extract propolis suppressed completely the growth of a human NF1 cancer called MPNST (malignant peripheral nerve sheath tumor) and caused an almost complete regression of human NF2 tumor (Schwannoma), both grafted in nude mice.</td>
<td>New Zealand (poplar)</td>
<td>New Zealand (poplar)</td>
<td>84</td>
</tr>
<tr>
<td>Successful treatment of human giardiasis (intestinal parasitism)</td>
<td></td>
<td>Cuba</td>
<td>203</td>
</tr>
<tr>
<td>In vivo effect in healthy (n=49), Effect gender specific (only in men) For the men test group after the initial 15 days of propolis treatment, 23.2% (p = 0.005) decrease in concentration of malondialdehyde was observed. No effects in women</td>
<td></td>
<td>Croatia (poplar)</td>
<td>143</td>
</tr>
</tbody>
</table>
Clinical study for the treatment of bronchial asthma with 22 patients receiving a propolis supplement and 24 with a placebo control: a substantial improvement of conditions in treatment group, accompanied by drop of proinflammatory cytokinines. It was found that propolis decreases the erythrocytes membrane fragility of patients with hereditary spherocytosis red blood cells. The results obtained in vitro suggest that the membrane fragility increases under oxidative stress conditions for the patient RBC’s and the protection effect of propolis is due to its antioxidant properties.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Place</th>
<th>Propolis Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improves the immunological response of humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of chronic vaginitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of Peyronie's disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of psoriasis with propolis ointment or propolis intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of recurrent cervicitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anti-inflammatory activity

Inflammation (inflammatio, to set on fire) is the complex biological response of vascular tissues to harmful stimuli, such as pathogens, damaged cells, irritants and free radicals. Antiinflammatory activity is thus defined as the primary effect of the host defence system.

The antiinflammatory activity of propolis has been reviewed by Almeida and Menezes. Propolis has inhibitory effects on mieloperoxidase activity, NADPH-oxidase ornithine decarboxilase, tiroside-protein-kinase, and hyaluronidase from guinea pig mast cells. This anti-inflammatory activity can be explained by the presence of active flavonoids and cinnamic acid derivatives. The former includes acacetin, quercetin, and naringenin in the latter includes caffeic acid phenyl ester (CAPE) and caffeic acid (CA).

CAPE and galagic, both typical poplar propolis constituents exhibited anti-inflammatory activity and significantly inhibited carrageenan oedema, carrageenan pleurisy and adjuvant arthritis inflammations in rats.

An ethanol extract of propolis suppressed prostaglandin and leukotriene generation by mouse peritoneal macrophages in vitro and during zymosan-induced acute peritoneal inflammation in vivo. Dietary propolis significantly suppressed the lipoxygenase pathway of arachidonic acid metabolism during inflammation in vivo. CAPE was a more potent modulator of arachidonic acid metabolism than caffeic acid, quercetin and naringenin.

Baccharis propolis suppresses the hypoxia-induced neuroinflammatory responses through inhibition of the NF-kappa B activation in microglia. Furthermore, increased generation of ROS from the mitochondria is responsible for the NF-kappa B activation. Therefore, propolis may be beneficial in preventing hypoxia-induced neuroinflammation.

Propolis can be regarded as food supplement for counteracting body and nerve inflammation

APPLICATIONS IN MEDICINE

The main medical application of propolis are based on its antimicrobial, antiinflammatory and immunomodulating effects: e.g. ins stomatology, ortorhinolaryngologic diseases, gastroenterology, gynecology, pediatric, urological and chirurgical diseases. It has also potential in other medical fields such as cancerology, dermatology, endocrinology, where the other biological effects of propolis also play a role.

The medicinal effects of propolis are summarised in table 5, as available in original publications.

Dentistry

The application of propolis in dentistry is probably the most well scientifically documented and now practically applied in many countries, mostly the developing ones. The different applications were reviewed in different publications, the last in 2013. Propolis is applied in the different dental specialities: oral hygiene; periodontology and oral mucosa pathologies; oral surgery; orthodontics; restorative dentistry; endodontics and prosthetic dentistry.

Oral hygiene
Propolis inhibits in the mouth different pathogenic microbes such as bacteria, fungi and viruses and can be successfully applied against the different stomatological pathologic conditions: plaque formation, mouth wounds and ulcers, denture and aphthous stomatitis, paradontosis, periodontitis, gingivitis, dental hypersensitivity and caries, and against Candida-associated denture Stomatitis.

Most of the in vivo test carried on rats and also clinical tests on humans showed positive results in reducing bacterial plaque (caries). The soft and periodontal tissues surrounding dental implants are particularly susceptible to bacteria invasion and inflammatory reactions due to complex histological structures. A study was carried out to investigate the influence of a Baccharis propolis-containing hygienic agent on selected oral health parameters, oral microflora, and the condition of periodontal health. Sixteen subjects who underwent an oral rehabilitation with dental implants were selected and randomly assigned into two groups, which received a newly formulated propolis-containing toothpaste (3% CA) or a negative control without an active ingredient (CC). Approximal plaque index (API), oral hygiene index (OHI, debris component), and sulcus bleeding index (SBI) were assessed in three subsequent stages. During the first and last examinations, the swabs were employed for microbiological inoculation. Propolis-containing toothpaste was found to be distinctively effective in improving oral health and hygiene and the occurrence of gingivitis triggered by dental plaque. The qualitative and quantitative changes in oral bacteria spectrum were observed. Antibacterial measures containing propolis might be used as a natural adjuvant to other active substances in individuals with a high risk of periodontal problems against pathogenic oral microflora.

Halitosis, an unpleasant breath, is also largely related to hygiene of the oral cavity. The byproducts of degradation of microorganisms located in the mouth are one of the reasons of bad breath. Microbes particularly related to the creation of bad breath include the red complex bacteria and: Prevotella intermedia, Porphyromonas endodontalis, and Eubacterium. The measurements of the content of volatile sulfur components in exhaled air with the use of halimeter indicate that propolis reduces halitosis, see original references in.

Periodontology (inflammation of the teeth supporting tissue) and oral mucosa pathologies.

The confirmation of the effectiveness of propolis in fighting etiological factors of periodontitis made some authors include these preparations in the periodontologic therapeutic protocol. Mucoadhesive hydrophilic gel containing propolis, when applied to gingival pockets, can be useful in treatment of periodontitis. Additional subgingival irrigations with a propolis extract during periodontologic treatment allowed to obtain better results than scaling and root planning. Not only local, but also oral use of propolis-based preparations turns out to be effective in periodontal treatment, see original publications in.

In cases of infection of the oral mucosa caused by Herpes simplex it was shown that propolis solutions had a high antivirus effectiveness. Propolis delays growth and progression of skin changes in an early stage of infection with Herpes simplex and does not have cytotoxic effects. Propolis can be used also in the treatment of recurrent aphthoid stomatitis, see original publications in.

Oral surgery

Most studies show very good effects of storage of avulsed teeth in propolis. Propolis is extremely effective; it not only reduces apoptosis of periodontium cells but also increases their metabolic activity and proliferation. Local application of propolis after surgery helps wounds to heal, reduces inflammation and has also an analgesic effect, see original publications in.

Orthodontics

In malocclusions accompanied by a considerable narrowing of the maxilla, it is necessary to use a device to expand the palatine suture. There is a positive effect of propolis solution on bone forming process during the treatment with the device to expand the palatine suture, there is an an increased quantity of osteoblasts in preparations from rats which received propolis during the treatment. In such cases bone remodelling within the palatine suture was quicker, see original publications in.

Restorative Dentistry

In restorative dentistry, propolis can be used to decrease permeability of the dentin and to direct pulp capping in order to create restorative dentin. Propolis can reduce dentin permeability. On this basis, it can be concluded that it counteracts tooth sensitivity. The regenerative effect of propolis on the tooth pulp has been known for a
long time. Nevertheless, there is no consent on the subject of propolis extracts effectiveness in comparison with calcium hydroxide which is most often used in stimulation of creation a reparative dentin. It seems that there are no important differences in direct capping with propolis and with calcium hydroxide-based products. Both of them offer a similar degree of healing pulp inflammation, reducing quantity of microbes and stimulating creation of dentin bridge. Also propolis, calcium hydroxide, and MTA have similar effectiveness in the induction to create reparative dentin. It seems that there is a higher effectiveness of direct pulp capping with propolis than with calcium hydroxide-based products. Propolis not only stops inflammatory reaction, infection with microbes and pulp necrosis but also induces formation of high quality tubular dentin through stimulation of stem cells, see original publications in 337

Endodontics

One of the aims of endodontic treatment is a complete elimination of microbes in root canals. The effectiveness of medicines used in endodontology is often assessed through a test of Enterococcus faecalis growth which is resistant to unfavorable environment and can survive in the root canal system despite application of medicaments. Many studies show that propolis effectively limits the quantity of E. faecalis in root canals, but its effectiveness might be lower than that of chlorhexidine see original publications in 337

For the different purposes propolis is applied in form of sprays, mouthwashes (both with or without alcohol), toothpastes, gels and other specific preparations

Otorhinolaryngologic and respiration diseases (ear, nose, throat, and head and neck disorders)

This topic has been reviewed by Marcucci182, Asavova15, Shkenderov-Ivanov299 and Tichonov324. Following diseases have been treated, indicated is also the number of cited studies:

- Chronic and acute inflammation of the inner ear: 10
- Common acute cold, acute and chronic inflammation of the upper respiration path: 13
- Synositis: 3
- Laryngitis (larynx inflammation): 2
- Tonsillitis (infections of the tonsils): 4
- Pulmonary tuberculosis: 5 (sometimes together with antibiobics and together in complex of anti-tuberculosis measures)
- Bronchial asthma: 3

A total of 260 steel workers suffering from bronchitis were treated for 24 days by various methods including local and systemic regulation of the immune system and local treatment with an ethanolic extract of propolis (EEP) in a physiological salt solution. The best results were obtained in patients treated with EEP inhalations286. For the otorhinolaryngologic (ear, nose, throat) treatments following application forms have been used:

- Common acute cold, acute and chronic inflammation of the upper respiration path, synositis, bronchial asthma: aerosol inhalation combined with EEP intake
- Inflammation of the inner ear: tampons and washing with propolis extracts
- Tonsillitis: aerosol inhalation, application of propolis ointments

Application forms

- Propolis inhalation 3 to 5 times a day
- Drops (10-15 drops of 20 % propolis, 3 times a day) or
- Tablets: 4-6 times daily of tablets containing 50 mg propolis
- Cream and ointments containing 5-10 % propolis

Gastroenterology

From the different effects reported in table 5 and 6 the most widely mentioned are the ones concerning the effects of propolis in gastroenterology. Propolis is known as a powerful inhibitor of Helicobacter pylori, the causative agent of gastric, duodenal ulcers and gastritis and it was used alone or in combination with antibiotics for the prevention and treatment of gastric ulcers.

Due to its antiinflammatory and antimicrobial properties propolis supplements can be used for the prevention of bacterial infection and of inflammation of the stomach and duodenum

Propolis against cancer

This promising area has been reviewed by Galvao et al. and in 2010 by Orsolic showing that there are numerous antitumor effects in cell culture and animal tests.

Thus regular propolis consumption could have a preventive anticancer effect.

On the other hand, there are very few human studies. One major threat for women is the human papilloma virus (HPV) infection which can lead to cervical cancer, which is the most frequent cancer in women, especially in the developing world. But even in Western countries there are many HPV-associated dysplasias which require surgery by means of conisation or even hysterectomy. Two studies have shown that propolis-containing local therapy can eradicate HPV infections within six months. In a randomised trial, HPV infections were present after three months of treatment in 28% of patients treated with propolis compared to 90% in the control group. Similarly, another study described an improvement in PAP smears of 76% with the use of propolis. Here, treatment with bee products offers an interesting approach which could avoid invasive surgery.

Regular consumption of propolis food supplements can have a preventive effect against mutation linked cancers in humans.

In a controlled clinical trials it was shown that propolis treatment prevented oral mucositis in breast cancer patients and in head and neck patients.

The experience of Ludyanski

Table 6. Applications of propolis in a big Russian hospital

<table>
<thead>
<tr>
<th>Treated disease</th>
<th>Very good and good improvement</th>
<th>No improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecia</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>Geriatriy</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Impotency</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Inflammation of the vagina</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Prostatitis</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Radicultis, polyradiculoneuritis</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Stomach ulcer</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>Stomatolgy</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

Ludyansky, a chief doctor in a big Russian hospital, with life-long practice in apitherapy, has summarised the apitherapy knowledge in his monograph “Apitherapia” (in Russian). He summarises the medical uses of propolis in his hospital in the following table:
EXTERNAL APPLICATIONS: SKIN LESIONS, SURGERY, WOUNDS, BURNS, ULCERS, SKIN AND EYE DISEASES, GYNECOLOGY

Skin lesions, surgery, wounds, burns, ulcers

Propolis applications in this area are known since ancient times and are based on its antimicrobial and anti-inflammatory properties. In the review of Barbosa it is stated32, “In this review 4 studies on the successful use of propolis in skin lesions such as ischemic ulcer, stasis ulcer, venous ulcer, iatrogenic lesion and ulcer were reported. Applied was 30 % aqueous propolis extract. After the first week of use already, improvement of wound odour and patient’s sensitivity to pain was observed, as well as a decrease in the number of microorganisms. The authors of this study emphasized that wound healing efficacy is closely associated with the propolis concentration in the solution. Another study, which used propolis ointment on 22 chronic wounds, of which 11 were venous ulcers, seven pressure ulcers, two diabetic ulcers, and two post-trauma injuries, found that necrotic tissue was present in 14 (8.2%) during tissue assessment process. However, there was no necrotic tissue after therapeutic intervention. Mean healing time was 13.2 weeks. Considering a 20-week follow-up, 74.1% of ulcers healed before this period. In addition, regarding pain felt by people with chronic wounds, all of them reported improvement, even though its level was not assessed by this study. “

The applications, citing Eastern European studies has been reviewed by Asavova15. The applications can be summarised as follows, together with indication of the number of the successful studies:

Ulcers: 5; Burns: 2; Healing of damages due to cancer radiation treatments:2; badly healing wounds: 1

In humans it has been used for treatment of surgical diseases121, wounds 99 and burns 113, 232. In Cuba a better success was achieved by mixing honey, propolis and thyme oil

In the Russian centre for the treatment of burns 15 % propolis in animal fat or plant oils was used. The propolis ointment had a anaesthetic, bactericidal and wound regeneration effect, improving also blood and lymphatic system232. More recently the Russian preparation “Propolis Geliant”, based on a propolis containing mixture with sunflower oil and heavy fractions of a dark natural wax is successfully used for the treatment of burns, wounds, skin diseases and in cosmetics15.

In Poland Sheller has used ethanol extracts of propolis in the clinic to treat patients with burns, crural ulceration, pressure ulcers, osteomyelitis, infections of the wound after trauma/injury and infections of the operative wound162

Hartiwich et al. tested propolis treatments on patients operated for goitre, patients with wounds and ulcerations difficult to heal and patients with non-specific rectal inflammation. They also tested the effectiveness of propolis as supplementary means in eradicating treatment of Helicobacter pylori. It was found that the drug was tolerated very well, practically had no side-effects and was highly effective21

In another study, the effect of Brazilian propolis skin cream was compared with that of silver sulfadiazene (SSD) in the treatment of minor burns (superficial second degree) in the ambulatory care setting (less than 20% total body surface area burned). The study was conducted at a burn clinic in Brazil. Patients were admitted to the study only if their initial presentation for burn care was within 48 hours post-injury and if bilateral wounds of similar depth and quality were present. Patients had propolis skin cream applied to one wound and SSD applied to the other selected wound on initial presentation and underwent debridement and dressings change the following morning. Patients subsequently returned to the clinic every 3 days to have the wounds checked and dressings changed. At these check-ups, wounds were cultured for microbial growth and photographed to document inflammation and cicatrisation. Patients were instructed not to disturb their wounds or change their dressings at home, thus propolis skin cream and SSD were applied to the wounds only at the specified 3-day intervals. The results do not show any significant difference in microbial colonization between wounds treated with SSD and propolis skin cream, however, wounds treated with propolis skin cream consistently showed less inflammation and more rapid cicatrisation then those treated with SSD. It is concluded that propolis skin cream appears to have a beneficial effects on the healing of partial thickness burn wounds. More frequent application of propolis should enhance the antimicrobial and wound healing effects of propolis113. Antimicrobial Brazilian propolis (EPP-AF) containing Biocellulose Membranes is a promising biomaterial for skin wound healing33

In a study with Bacharis propolis it was found that optimum results for treating wounds can be achieved by propylene glycol containing 3.6 % propolis. At this concentration all tested bacteria could be inhibited40

Propolis gels for application on wounds or burns have been recently developed18
Application forms: propolis ointments or creams, 10-20 % propolis water tinctures, no ethanol tinctures

Skin diseases

Against epidermophytosis, skin tuberculosis alopecia; psoriasis; different microbial and chronic eczemas, cutaneous conditions of cold regions, pyoderma; Trichophyton skin inflammation

Application forms: 10-50 % propolis ointments or creams, 10-20 % propolis water tinctures

Eye diseases

Several successful clinical studies on the treatment of a variety of eye diseases are reported: keratitis, conjunctivitis and blepharitis. 0.3 - 1 % aqueous propolis solutions have been applied. Tichonov et al. developed special propolis preparations, bases on specific propolis fractions, especially adapted for eye applications.

Gynecology and urology

The applications of propolis in gynecology and urology are based on the antibacterial and anti-inflammatory effects of propolis. These applications have been reviewed by Asavova. Most successful is the treatment of the inflammation of the vagina and of the female genital area, where 8 successful studies were cited. For this purpose direct application of 20-30 % EEP and EEP-tampons were used. Two studies with successful treatments of vagina erosions were cited, alone or in combination with cortisone creams, with application of 15% propolis in fatty cream or intake of EEP.

Other external applications

Propolis ointments have been successfully used against cold sores, Herpes simplex skin lesions and Herpes zoster lesions, and also against genital herpes. Egyptian propolis was successfully used against different types of warts.

According to Potschinkova propolis-beeswax warming plasters can be used for the treatment of arthritis and arthrosis and against sprains, physical injuries, inflammations of muscles, nerves and filaments. Propolis ointments are also used for these conditions.

Attention when applying propolis externally: test for propolis contact allergy before application

VETERINARY MEDICINE AND AGRICULTURE

The application of propolis in veterinary medicine is based on its antimicrobial properties. It is reviewed in the monographs of Zakoff and Teterev (1998). Teterev describes several preparations for veterinarian use: Biogel 5: containing 0.5 % propolis and 2 % carboxymethylcellulose for intake against gastroenterology diseases, for prophylaxis; Biogel 10, similar to Biogel 5 but contains 1 % propolis.

Uses of propolis in veterinary medicine

Mastitis: application of propolis linement	88, 151, 194, 199, 323
Gynecological diseases: application of propolis candles	323
Feeding of weak pigs, prophylactics of gastronenterological and respiration diseases of pigs: feeding with 0.5 % propolis in milk	323
Improves weight gain and reduced diarrhoea in mild-fed calves with 5 ml of 20% ethanol extract	115
Prophylactics of calf diarrhoea: at to feeding 0.5 ml/kg of 10 % ethanol extract	323
Prophylactics against paratyphoid fever of ducks: feeding with 50 % propolis aqueous extract	323
Wound healing: application of 5% propolis in fish oil or fat	323
As a local anaesthetic in surgery: 1 to 10 % PEP	329
Against foot-and-mouth disease’ induced damages on the uterus of cows and pigs	329
Against enzootic pneumonia of pigs	329
Stimulant for the growth of underdeveloped lambs, pigs and calves	329
Agriculture
This use has been reviewed by Teterev323. Intake of propolis increases of weight gain, development rate and productivity of different animals. 1 to 10 % propolis in milk is used, the intake being about 10 ml/kg. Following uses have been described.

- Weight gain, increased rate of development of animals and productivity
- Improvement of meat quality
- Increased rates of egg laying of hens

Propolis has been also used:

- to control the white rot disease of onions95
- against potato viruses84
- to inhibit the growth of \textit{A. ochraceus} NRRL 3174 as well as biosynthesis of ochratoxin in Ras cheese ripening204
- as a natural antioxidant for conservation of plant oils and butter228,229 and meat118,119
- against soy-bean and sunflower wild diseases774
- inhibitory effect on germination and cell division in the root tips of wheat seedlings311
- as potential pre- and post-harvest fungicide in avocado storage107
- better feeding of bulls than conventional additives342
- enhancing the ruminal degradability210

PROPOLIS PREPARATIONS
The application forms shown in this section are adapted after Ludyanski177 Pochinkova258, Tichonov et al.324 and in the online publication of Krell160, where more recipes can be found.

Tichonov’s monograph on propolis preparations
Prof. Tichonov and his team of the Ukrainian Kharkov pharmacy faculty, has produced a detailed propolis monograph describing in detail different propolis preparations (poplar propolis) He compared the extraction of phenolic substances in 40, 70 and 95 % ethanol for 24 to 144 hours extraction time (maceration). Best extraction of the phenolics was achieved by 70 % and 95 % ethanol after 144 hours. About 90-95 % of the maximal extraction was achieved already after 72 hours. He also compared also the dependence of the extraction efficacy on the size of the propolis particles, best extraction was found with 0.5 - 1 mm particles. Tichonov developed a fractional-differential extraction method with better efficacy than the traditional maceration method. The extracted propolis is called Phenolic Hydrophobic Preparation (PHP). The aim was to produce a water soluble PHP containing a maximal concentration of the phenolic active ingredients, using detergents. For that purpose he uses Polysobate 20, 40, 60 and 80 (Tween 20) a polysorbate surfactants whose stability and non-toxicity allows it to be used as detergents and emulsifiers in a number of domestic, scientific and pharmacological applications. The oral toxicity dose for the Tween substances is 25 g/kg. A maximal concentration of the phenolic fraction was achieved by mixing 1 part of PHP, 0.3 p Tween 80 and 0.5 p water, a concentration of 55.5 % PHP. Tichonov tested also solubilisation with different non toxic, synthetic non-ionic surfactants. He chose ethylene oxide / propylene oxide copolymers type surfactants with a MW of 5500. Tichonov determined the bioavailability and the toxicity of water soluble PHP. Based on his studies different propolis preparations are marketed in the Ukraine324.

A topical formulation of Brazilian propolis was developed, containing Polowax as a stabilizer against UV damage185.

Raw whole propolis
The simplest application of is to grind frozen propolis to powder with the help of a mill. Simple coffee mill does the job. The propolis powder can be mixed to honey food or drinks for intake, can be used as a starter for solutions or can be used for the production of propolis pills. Large pieces of propolis can be chewed, but it should be consumed in small quantities. Powder can be made into capsules or mixed with A special form of raw propolis, the so called water soluble whole propolis has been developed by Glenn Perry, \texttt{www.glennperry.com}

Tinctures
Tinctures are prepared in ethanol, glycol and olive oil. The latter two ones are better for skin and cosmetic applications. Ethanol is the best solvent for extracting the bioactive substances (balsam). Propylglycol can dissolve less propolis, 20 g per 100 ml glycol can be dissolved292. Glycol tinctures are highly antioxidant and can be used in skin protection184.
Total amount of phenolic compounds in extracts made in polyethylene glycol 400 (PEG) and water mixture or in PEG, olive oil and water mixture at 70 °C was comparable to that of ethanolic extract. Predominantly identified compounds were phenolic acids, which contribute ca. 40 % of total radical scavenging activity. Investigated nonethanolic extracts inhibited the growth and reproduction of all tested microorganisms. Antimicrobial activity of some extracts was equal or exceeded the antimicrobial effect of ethanolic extract. Extracts made in pure water or oil only at room temperature, contained more than 5 - 10-fold lower amount of phenolic compounds, and demonstrated no antimicrobial activity.

Ethanol tinctures

Ethanol tinctures are prepared in ethanol, glycol and olive oil. The latter two ones are better for skin and cosmetic applications. Ethanol is the best solvent for extracting the bioactive substances (balsam). Propylene glycol can dissolve less propolis, 20 g per 100 ml glycol can be dissolved. Glycol tinctures are highly antioxidant and can be used in skin protection.

Ethanol tinctures

The optimal conditions for propolis extraction have been studied in different publications. In practice propolis is generally macerated (extraction in the solvent without stirring) with occasional shaking. Other extraction methods as Soxlett, ultrasound or microwave or differential extraction are better but need specific equipment and cannot be used under home conditions. 60-80 % aqueous ethanol solutions have a higher biological activity than tinctures, prepared with more or less water. In practice many different propolis extraction procedures are given, the maceration time being sometimes as long as one year. The maceration time for best extraction of bioactive materials depends on different factors: e.g. on the extraction time, extraction method, on the solvent composition, on the propolis concentration and on the size of the propolis particles. Higher temperatures increase the extraction power, but due to the volatility of ethanol room temperature between 20 and 25 °C are optimal.

Extraction has been studied for poplar propolis in detail by Tikhonov and coworkers who developed a semi-industrial method of differential extraction for optimal and reproducible extraction of propolis. They found that optimum extraction of phenolics is when fine propolis particles (size 0.5-1 mm) are extracted using 95 % ethanol. These particles which already after 3 days optimum extraction of phenolics is achieved under conditions of maceration.

Cunha et al. found out that when using 70 % ethanol the maceration of 20 g/ 100 ml of green propolis is optimal 30 days of extraction time, although there was no statistical difference between the extractions of 10 and 30 days. In another study on extraction of Baccharis propolis a minimum of 5 days was suggested. Salonen found that a maceration time of 2 months of Finish propolis will further improve extraction by about 5-10 %, but it was not tested if this effect was significant.

Practical considerations

- For human use only non-toxic solvents should be used, ethanol of Pharmacopeia quality is the best choice.
- The amount of balsam (bio-active, ethanol soluble part of propolis) that can be dissolved is generally not been exactly determined: the percentage of propolis indicates how much raw was originally macerated with propolis. Until 50 % ethanol tinctures are sold on the market.
- If the pH of the aqueous ethanol is fixed at 8.0 more flavonoids can be extracted.
- Propolis should be pure, remove coarse debris and excessive wax.
- Place propolis in freezer and break it in small pieces or mill it to powder for a better solubility.
- 60-80 % aqueous ethanol solutions have a higher biological activity than tinctures, prepared with more or less water. 70 % Propolis is most widely used.
- Store vessel in the dark for about two weeks, shaking occasionally, more than 2 weeks brings only a small improvement of yield.
- Filter through a paper filter (coffee filter will do) and store tincture closed in a clean dark vessel. If vessel is not brown or reddish, store in the dark, or pack vessel in aluminium foil.
- Ethanol-free propolis can be made by evaporating the ethanol in a water bath. The remaining pure balsam can be mixed to honey or other materials where ethanol-free material is required.

Propolis ethanol tincture:

- Add 100 g propolis to 400 g 70 % ethanol (for 20 % tincture)
Store vessel in the dark for two weeks, shaking occasionally (the longer the extraction time, the greater the concentration of active ingredients, but 1-2 months will further improve the extraction by 5-10%).

Filter through a paper filter (coffee filter will do) and store tincture closed in a clean dark vessel. If vessel is not brown or reddish, store in the dark, or pack vessel in aluminium foil.

Glycol and olive oil tinctures

Glycol

Propolis powder can be macerated with propylene glycol, the maximum being 10 g/100 ml, for 2-4 weeks, and then filtered. Higher propolis concentration can be achieved by evaporation of ethanol tinctures and replacing ethanol by glycol. 30% propolis solution was used in wound and burn treatments. This solution is better for use as mouth and nose sprays. Note that this solution is only for **external use**.

Olive oil

Olive oil alone does not extract enough propolis. Only about 5 g propolis per 100 ml can be dissolved. The more propolis can be dissolved by adding 96% ethanol: e.g. propolis 30 g, olive oil 70 ml, ethanol 96% 60 mL.

Propolis water extracts

Whole dry water soluble propolis

A patent described by Sosnowski, based on the extraction of poplar propolis. "The following examples are set forth in order to fully describe the method for extracting and purifying propolis as well as the resulting dry propolis powder and its uses. About 500 grams of clean raw propolis was placed in an amber glass container and covered with about 1 liter of absolute ethanol. This mixture was allowed to sit for ten days at room temperature with periodic agitation several times each day. At the end of ten days, the mixture was filtered through Whatman No. 1 filter paper. The resulting propolis-containing filtrate was then incubated at about 70 degrees C until a dry propolis powder was obtained."

Another method patented by Hajime (1999) uses extraction of Brazilian propolis under conditions of pH adjustment, the method is available online.

Water extract after Ludyanski

- 300 ml of water is poured in a pan over 30 g propolis, cut in small pieces.
- Close pan and boil gently for 40-45 min.
- Cool down, collect wax from the surface and decant supernatant (1).
- Add a new portion of 30 g propolis pieces to remaining precipitate in the pan and 300 ml of cold water.
- Boil gently for 10-15 minutes
- Cool down, collect wax from the surface and decant supernatant into vessel with supernatant 1 to give about 500-600 ml of propolis water extract

Simple extraction with water

- Add 50 g of propolis to 100 ml of water
- Boil for 60 minutes
- Cool down to room temperature and filter

According to Ludyanski this water extract has an antifungal, antibacterial effect and also other known biological effects. This water is ready for drinking. Keep in a dark place.

For extraction methods like this one and others, where the final product is a paste or powder, the initial proportions of propolis and solvent are not very important. Much larger quantities of propolis can be used for quicker extraction, e.g. 500 g propolis in 1000 ml solvent. However, sufficient active ingredients usually remain in the filter residues to justify another, longer extraction with clean alcohol. A few recipes using the dried powder are mentioned at the end of this chapter. No scientific publications or studies were cited by Sosnowski (1984) concerning the efficacy or biological activity of this extract, though he claims that the antioxidant properties of the propolis extract from concentrated ethanol or diluted ethanol are the same.

Propolis can be macerated with water by stirring 2.5 g/100 ml

Extraction at 30°C with water with a subsequent nanofilter filtration lead to a good extraction of Baccharis propolis. A minimum of 5 days and a adjustment at pH 8.0 has been suggested for optimum water extraction.
of Baccharis propolis but the extensive studies with aqueous ethanol suggest 30 days for optimum extraction of the same propolis type.

Propolis pills and semisolid preparations
Grind finely deeply frozen pure whole propolis with a cold mill. Mix propolis powder with lactose, e.g. 1:1 and press into pills.

A Lithuanian semisolid preparation with a soft propolis extract (patented) with olive oil and cocoa butter is described.

Krell describes a preparation of a propolis paste based on the evaporation of an ethanol extract. This paste can be used itself or added to different types of butter.

Mixtures, emulsions, concentrates, creams, ointments

Ethanol-water mixtures
- Mix 1 part 30% propolis ethanol tincture with 5, 10 or 100 parts of water.

Some the propolis constituents will precipitate. The durability of this mixture durability is limited to 7 days. Store in the dark. Shake before use. Used for stomatology and for compress.

Ethanol-oil emulsion:
- Mix 1 part 30% prop ethanol tincture with 1 or 2 parts of glycerol or edible oil.

Store in the dark. This emulsion has an indefinite shelf life.

Propolis concentrate
There are propolis concentrates with 25% liquid (“wet” concentrate) and 5% liquid (“dry” concentrate. The concentrates are prepared by the ethanol of a 30% propolis ethanol tincture at 60°C in water bath (see above). These concentrates are used for the preparations of creams, pastes and suppositories, or for mixing it to honey.

Propolis creams and ointments for different uses

Creams on the basis of a propolis concentrate
- Use vaseline or vaselin-sunflower (2:1) oil and lanoline as an emulgator. In practice 1,2 and 5% propolis are used.
- 1 and 2% cream: add 90 g vaseline, 10 g lanoline to 1 or 2 g of a dry propolis concentrate.
- 5% cream: add 80 g vaseline, 15 g lanoline to 5 g of a dry propolis concentrate.
- While mixing lanoline with a spatula add first propolis concentrate until a uniform mass is attained, then add vaseline and mix well.

For the basis of the cream vaseline and lanoline in proportions 9:1 and 8:2 are used. For 100 g of this basis 10-20 ml of 30% propolis ethanol extract are used:
- warm up basis in a water bath (at about 40-50°C) and add propolis extract
- while stirring, warm to boiling to evaporate ethanol
- While still warm sieve cream, containing 3 or 6% propolis and pack it in a dark cream box, tightly closed.

Propolis paste
Place propolis in freezer, cut it into small pieces and ground it to a fine powder. Mix it in a vessel with the basis (honey, margarine, butter etc.), so that 5, 10, 15 and 20% propolis cream is obtained. Also, the dry concentrate can be used (5 g dry propolis concentrate for 100 g basis). The dose to be taken is 3 times a day, take a tea spoonful 0.5-1 hour before meals.

Propolis butter
- Boil 1 kg of butter and cool down to 80°C
- Add 150 g propolis powder and mix well
- Cover with lid and wait 20 min. while stirring from time to time, in order to prevent propolis from stirring to pan.
- Extract propolis into butter by heating mixture at 80-90°C while energetically stirring
- Filter hot mixture through a gaze and keep closed in a cool dark place until consummation.

The dose to be taken is 3 times a day, take a tea spoonful 0.5-1 hour before meals.
Propolis cream for dentistry, ingredients (in parts by weight) after

- 10 Lanolin
- 10 Unbleached beeswax
- 10 Petrolatum (or Vaseline, the trade name for a petrolatum)
- 2 Ethyl aminobenzoate
- 3 Clove oil
- 15 Propolis (50% EEP)

COSMETICS

Different uses of propolis in cosmetics after Krell

<table>
<thead>
<tr>
<th>Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-bacterial agent</td>
<td>Deodorants and antiperspirants</td>
</tr>
<tr>
<td>Anti-dandruff and sebum equalizing agent</td>
<td>Shampoos and hair lotions</td>
</tr>
<tr>
<td>Anti-microbial and healing agent</td>
<td>Anti-acnes and after-shave products</td>
</tr>
<tr>
<td>Purifying agent</td>
<td>Cleansing creams and lotions</td>
</tr>
<tr>
<td>Preservative</td>
<td>In all of the above</td>
</tr>
</tbody>
</table>

Propolis is used as cream or lotions for different cosmetic purposes. The propolis uses for cosmetics have been investigated. Its use is based on the antibacterial, antifungal, anti-viral anti-acne, anti-inflammatory, antioxidant effects, epithelial, micro-circulation and topical anaesthetic effects. Low toxicity and good skin compatibility have been demonstrated, despite the risk for allergic reactions. For skin lotions and creams for cosmetic use 1-2% propolis seems to be the appropriate amount. However, before use a test on a small skin surface should be made, if there is a propolis allergy problem. The possible allergising effects should be marked on the product.

Propolis for skin care

Propolis used in skin care is based on its anti-allergy, anti-inflammation, anti-androgen, anti-lipase, antimicrobial and a promotive action on collagen synthesis. Thus, the dermatological and cosmetic uses for propolis and its extracts are very common. The skin lesion applications of propolis have been reviewed by Barbosa et al.

Propolis can be used in skin and mouth cosmetics for mouth prophylactics and for the prevention of different stomatological pathologic conditions: stomatitis, paradontosis, gingivitis and caries. While use of Baccharis propolis is without problems, people using poplar propolis allergy should make an allergy test.

ALLERGY AND TOXIC EFFECTS

Most allergy studies are conducted with poplar propolis. There are no reported cases of allergy cases of other propolis types.

Contact dermatitis

Poplar propolis can cause contact dermatitis. The responsible contact allergen are 3-methyl-2-butenyl caffeate and phenylethyl caffeate.

In a 2010 contact dermatitis test in the UK with 2828 normal human subjects 1.9% were found to be sensitive to propolis. In a questionnaire filled out by 1051 German beekeepers 3.6% declared skin sensitivity to propolis. Thus it seems that people that regular contact with poplar propolis seems to have a skin allergising effect. In another study 4.1% of 605 dermatitis allergic patients were allergic to propolis.

Walgrave reviewed different contact dermatitis studies and concludes that 1.2 to 6.6% of the patients undergoing patch testing are sensitive to propolis.

Individual cases of people allergic to ingested propolis (mouthwash, toothpaste) have been described. Special hypoallergenic propolis preparations have been developed for skin and wound applications.

Allergy after ingestion

Propolis allergy upon ingestion seems to be less frequent than contact allergy, due probably to its anti-allergenic and anti-inflammatory properties (see table 4). No data on the allergy frequency of the population is available. Reports on individual cases of people allergic to propolis ingestion have been published. On the other effect propolis ingestions has been shown to have an anti-allergenic effects, due to the flavonoids.
Toxicology
Burdock reviews many animal toxicological studies in animals. He concludes that an intake until 4000 mg/kg per day there are no measurable effects and establishes a No Effect Level (NOEL) at 1400 mg/kg per day. Generally a safety margin of 100 is assumed for drug and food additives. This means that a maximum of 14 mg/kg per or 980 mg per day for a human of 70 kg can be the daily acceptable intake.

HEALTH CLAIMS FOR PROPOLIS
According to the EU Regulation 1924/2006 different health claims can be made. According to the evidence presented in this review following health claims can be made:

1. Diet-related cancer
 Intake of propolis can reduce the risk for the emergence of cancer

2. Gut health, digestion and immunity
 Intake of propolis can improve gut health, digestion and immunity

SHELF LIFE INTAKE AND DOSAGE
Labelling and shelf life
Approximate figures, estimated from the qualitative data from the literature:

Proteins: max. 1 g/100 g
Carbohydrates: max. 1 g/100 g
Fat: max. 1 g/100 g

Shelf life:
- Ethanol extract: three years after packing or the ready product.
- Honey-propolis mixtures: two years after packing of the product.
- Raw propolis can be stored frozen for several years in an air-tight container.

Application forms

Tinctures
The most widely used form as 10 or 20% tinctures in 70 to 100 % ethanol. The percentage of the propolis tinctures is calculated according to the amount of propolis used. However the actual concentration of the propolis components is only half of that as the alcohol soluble resin is about 50 % of the total propolis.

An intake of 3 times 20 drops of 20% tincture a day corresponds to about 1 g tincture (from a standard 30 ml eye drop bottle) or about 200 mg of propolis per day, far from the maximum of 1400 mg per day. Children: half dose.

Propolis in honey
In many countries propolis is mixed to honey at about 1 g/100 g ratio. 10 g of honey (one full tea spoon) corresponds to about 100 mg of propolis. An intake of 3 spoons per day is often recommended, corresponding to a total of 300 mg propolis. Children: half dose

Tablets
Tablet contain generally about 50 mg of propolis, 3 to 6 pills per day are recommended, in total 300 mg of propolis, children: half dose.

It is necessary to supply information on the labels of propolis skin and cosmetic products about possible allergy reactions in risk individuals. Ingestion of propolis products is without problems.

LEGAL STATUS OF PROPOLIS: FOOD SUPPLEMENT OR MEDICINE?
In most countries of the world the propolis use is not regulated. In some countries, e.g. Austria, France, Spain, Japan, Taiwan, Korea, USA and Brasil propolis is considered as food supplement, together as the bee products bee pollen and royal jelly. In others like Switzerland and Germany it is considered a medicine. Due to its natural variation and varying properties propolis its application in medicine is problematic. It should be rather considered a food supplement with functional properties.
The health enhancing properties of propolis have much in common with the original function of propolis as a “defendant of the hive”. It is used to defend human health against microbes and to enhance human immunity against microbial intruders and disease.

References

33. BARUD, H D S; DE ARAUJO JUNIOR, A M; SASKA, S; MESTIERI, L B; DUARTE BONINI CAMPOS, J A; DE FREITAS, R M; FERREIRA, N U; NASCIMENTO, A P; MIGUEL, F G; LIMA LEITE VAZ, M M D O; BARIZON, E A; MARQUELE-OLIVEIRA, F; MINARELLI GASPAR, A M; LIMA RIBEIRO, S J; BERRETTA, A A (2013) Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose
Membranes as Promising Biomaterial for Skin Wound Healing. Evidence-based complementary and alternative medicine

43. BOLFA, P; VIDRIGHINESCU, R; PETRUTA, A; DEZMIREAN, D; STAN, L; VLASE, I; DAMIAN, G; CATOI, C; FILIP, A; CLICHICI, S (2013) Photoprotective effects of Romanian propolis on skin of mice exposed to UVB irradiation. *Food and Chemical Toxicology* 62: 329-342.

55. CAPUCHO, C; SETTE, R; PREDES, F D S; MONTEIRO, J D C; PIGOSO, A A; BARBIERI, R; HEIDI DOLDER, M A; SEVERI-AGUIAR, G D (2012) Green Brazilian propolis effects on sperm count and epididymis morphology and oxidative stress. Food and Chemical Toxicology 50 (11): 3956-3962.

69. COLE, N; SOU, P W; NGO, A; TSANG, K H; SEVERINO, J A J; DUKE, C C; REEVE, V E (2010) Topical 'Sydney' Propolis Protects against UV-Radiation-Induced Inflammation, Lipid Peroxidation and Immune Suppression in Mouse Skin. *International Archives of Allergy and Immunology* 152 (2): 87-97.

73. CUNHA, I B D; RODRIGUES, M L T; MEURER, E C; BANKOVA, V S; MARCUCCI, M C; EBERLIN, M N; SAWAYA, A C H F (2006) Effect of the maceration time on chemical composition of extracts of Brazilian propolis. *Journal of Apicultural Research* 45 (3): 137-144.

77. DALEPRANE, J B; ABDALLA, D S (2013) Emerging Roles of Propolis: Antioxidant, Cardioprotective, and Antiangiogenic Actions. *Evidence-based complementary and alternative medicine*

104. GALVAO, J; ABREU, J; CRUZ, T; MACHADO, G; NIRALDO, P; DAUGSCH, A; MORAES, C S; FORT, P; PARK, Y K (2007) Biological Therapy Using Propolis as Nutritional Supplement in Cancer Treatment. Int. J. Cancer Res. 3: 43-53.

105. GEORGIEVA, P; IVANOVSKA, N; BANKOVA, V S; POPOV, S (1997) Anticomplement activity of lysine complexes of propolis phenolic constituents and their synthetic analogs. Z. für Naturforschung 52 c: 60-64.

109. GONCALVES, C C M; HERNANDES, L; BERSANI-AMADO, C A; FRANCO, S L; SILVA, J F D; NATALI, M R M (2013) Use of Propolis Hydroalcoholic Extract to Treat Colitis Experimentally Induced in Rats by 2,4,6-Trinitrobenzenesulfonic Acid. Evidence-based complementary and alternative medicine

129. HORIZ, J I; ZAMBONI, D S; CARROA, D B; GOLDMAN, G H; BERRETTA, A A (2013) The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). *Evidence-based complementary and alternative medicine*

135. IKEDA, R; YANAGISAWA, M; TAKAHASHI, N; KAWADA, T; KUMAZAWA, S; YAMAOTSU, N; NAKAGOME, I; HIRONO, S; TSUDA, T (2011) Brazilian propolis-derived components inhibit TNF-alpha-mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. *Biochimica et Biophysica Acta-General Subjects* 1810 (7): 695-703.

146. KAKINO, M; IZUTA, H; TSURUMA, K; ARAKI, Y; SHIMAZAWA, M; ICHIHARA, K; HARA, H (2012) Laxative effects and mechanism of action of Brazilian green propolis. *BMC Complementary and Alternative Medicine* 12

159. KRELL, R (1996) Value-added products from beekeeping. FAO Food and Agriculture Organization of the United Nations Roma; 409 pp

162. KUCHARZEWSKI, M; KUBACKA, S; URBANEK, T; WILEMSKA-KUCHARZEWSKA, K; MORAWIEC, T (2013) Stan Scheller: The Forerunner of Clinical Studies on Using Propolis for Poor and Chronic Nonhealing Wounds. Evidence-based complementary and alternative medicine

177. Ludyanskii, E A (1994) *Apitherapy* 1231. Poligrafist Vologda, Russia

183. Marcucci, M C; Ferreres, F; Garcia-Viguera, C; Bankova, V S; De Castro, S L; Dantas, A P; Valent, P H M; Paulino, N (2001) Phenolic compounds from Brazilian propolis with pharmacological activities. *Journal of Ethnopharmacology* 74 (2): 105-112.

207. MORAWIEC, T; DZIEDZIC, A; NIEDZIELSKA, I; MERTAS, A; TANASIEWICZ, M; SKABA, D; KASPERSKI, J; MACHOROWSKA-PIENIAZEK, A; KUCHARZEWSKI, M; SZANIAWSKA, K; WIECKIEWICZ, W; WIECKIEWICZ, M (2013) The Biological Activity of Propolis-Containing Toothpaste on Oral Health Environment in Patients Who Underwent Implant-Supported Prosthodontic Rehabilitation. *Evidence-based complementary and alternative medicine*

212. MURASE, H; SHIMAZAWA, M; KAKINO, M; ICHIHARA, K; TSURUMA, K; HARA, H (2013) The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells. *Evidence-based complementary and alternative medicine*

214. NAKAMURA, R; NAKAMURA, R; WATANABE, K; OKA, K; OHTA, S; MISHIMA, S; TESHIMA, R (2010) Effects of propolis from different areas on mast cell degranulation and identification of the effective components in propolis. *International Immunopharmacology* 10 (9): 1107-1112.

218. OKAMOTO, Y; TANAKA, M; FUKUI, T; MASUZAWA, T (2012) Brazilian propolis inhibits the differentiation of Th17 cells by inhibition of interleukin-6-induced phosphorylation of signal transducer and activator of transcription 3. Immunopharmacology and Immunotoxicology 34 (5): 803-809.

239. PAULINO, N; COUTINHO, J; COUTINHO, L; SCREMIN A (2014) Clinical evaluation of the anti-inflammatory effect of baccharis dracunculifolia propolis gel on cervicitis. *RCEAM* 1

257. POSSAMAI, M M; HONORIO-FRANCA, A C; BARCELOS REINAQUE, A P; FRANCA, E L; DE SOUZA SOUTO, P C (2013) Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes. *Biomed Research International*

262. RAMANAUSKIENE, K; INKENIENE, A; PETRIKAITE, V; BRIEDIS, V (2013) Total Phenolic Content and Antimicrobial Activity of Different Lithuanian Propolis Solutions. *eCam* http://dx.doi.org/10.1155/2013/842985

282. SAUVAGER, F (1992) *Contribution to the study of antiviral properties of propolis* 618. These Doctorat, Universite de Rennes I, France

284. SAVKA, M; DAILEY, L; POPOVA, M; MIHAYLOVA, R; MERRITT, B; MASEK, M; LE, P; NOR, S; AHMAD, M; HUDSON, H; BANKOVA V (2015) Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis. *eCam* http://dx.doi.org/10.1155/2015/472593

290. SEGUENI, N; MAGID, A A; DECARME, M; RHOUATI, S; LAHOUEL, M; ANTONICELLI, F; LAVAUD, C; HORNEBECK, W (2011) Inhibition of Stromelysin-1 by Caffeic Acid Derivatives from a Propolis Sample from Algeria. *Planta medica* 77 (10): 999-1004.

298. SHINMEI, Y; YANO, H; KAGAWA, Y; IZAWA, K; AKAGI, M; INOUE, T; KAMEI, C (2009) Effect of Brazilian propolis on sneezing and nasal rubbing in experimental allergic rhinitis of mice. *Immunopharmacol Immunotoxicol* 31: 688-693.

305. SILVA, V; GENTA, G; MÖLLER, M; MASNER, M; THOMSON, L; ROMERO, N; RADI, R; FERNANDES, D; LAURINDO, F; HEINZEN, H; FIERRO, W; DENICOLA, A (2011) Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. *JAFC* dx.doi.org/10.1021/jf201032y

318. SZLISZKA, E; KROL, W (2013) Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells. eCam http://dx.doi.org/10.1155/2013/731940

327. TSURUMA, K; ICHIHARA, K; SHIMAZAWA M; HARA H (2015) Brazilian green propolis water extract up-regulates the early expression level of HO-1 and accelerates Nrf2 after UVA irradiation. *BMC-CAM* DOI: 10.1186/s12906-015-0945-4

329. TZAKOFF, TZ (1978) *Propolis in the healing practice*. CNTII Sofia

338. WU, Z; ZHU, A Q; TAKAYAMA, F; OKADA, R; LIU, Y C; HARADA, Y; WU, S Z; NAKANISHI, H (2013) Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-kappa B Activation in Microglia. *Oxidative Medicine and Cellular Longevity*

345. ZHU, W; CHEN, M; SHU, Q; LI, Y; HU, F (2010) Biological Activities of Chinese Propolis and Brazilian Propolis on Streptozotocin-Induced Type 1 Diabetes Mellitus in Rats. *eCam* doi:10.1093/ecam/neq025